Peak Indicator

A simple circuit to detect a peak of musical or audio signal. Each time where the level of signal exceeds the level + 4dB, turns on led D1. It is useful in each channel of console of sound, in final amplifiers or in that other application, to we needed. With the prices of circuit, the indicate begins with levels above + 4 dB (1.25V rms). For adaptation in different levels of signal, we can use a trimmer, before capacitor C1.


Circuit Diagram:


Peak Indicator Circuit Diagram

Mini Alarm



This mini alarm circuit, enclosed in a small plastic box, can be placed into a bag or handbag. A small magnet is placed close to the reed switch and connected to the hand or the clothes of the person carrying the bag by means of a tiny cord. If the bag is snatched abruptly, the magnet looses its contact with the reed switch, SW1 opens, the circuit starts oscillating and the loudspeaker emits a loud alarm sound. A complementary transistor-pair is wired as a high efficiency oscillator, directly driving a small loudspeaker. Low part-count and 3V battery supply allow a very compact construction. This circuit is suit for doors & windows alarm.


Circuit Diagram:

Powerful Security Siren Alarm

This circuit able to deliver more power than the siren circuit tha One-IC two-tones Siren. NO ICs are needed to build this alarm. A complementary transistor pair (Q2 & Q3) is wired as a high efficiency oscillator, directly driving the loudspeaker. Q1 ensures a full charge of C2 when power is applied to the circuit. Pressing on P1, C2 gradually discharges through R8: the circuit starts oscillating at a low frequency that increases slowly until a high steady tone is reached and kept indefinitely. When P1 is released, the output tone frequency decreases slowly as C2 is charged to the battery positive voltage through R6 and the Base-Emitter junction of Q2. When C2 is fully charged the circuit stops oscillating, reaching a stand-by status.


Circuit Diagram:

Audio Booster

Small and portable audio booster, Can be built on a veroboard

The amplifier's gain is nominally 20 dB. Its frequency response is determined primarily by the value of just a few components-primarily C1 and R1. The values of the schematic diagram provide a response of ±3.0 dB from about 120 Hz to better than 20,000 Hz.Actually, the frequency response is ruler flat from about 170 Hz to well over 20,000 Hz; it's the low end that deviates from a flat frequency response. The low end's roll-off is primarily a function of capacitor C1(since RI's resistive value is fixed). If C1's value is changed to 0.1 pF, the low end's comer frequency-the frequency at which the low-end roll-off starts-is reduced to about 70 Hz. If you need an even deeper low-end roll-off, change C1 to a 1.0 pF capacitor; if it's an electrolytic type, make certain that it's installed into the circuit with the correct polarity, with the positive terminal connected to Q1's base terminal.

Circuit diagram:


Audio Booster Circuit Diagram

Clap Sensitive On-Off Relay

This 3V Battery operated circuit can be used to activate a relay with a hand clap. Further claps will turn-off the relay. The circuit's sensitivity was deliberately reduced, in order to avoid unpredictable operation. Therefore, a loud hand clap will be required to allow unfailing on-off switching. Q1 acts as an audio amplifier. IC1 timer, wired as a monostable, provides a clean output signal and a reasonable time delay in order to allow proper switching of the following bistable circuit. A discrete-components circuit formed by Q2, Q3 and related parts was used for this purpose, in order to drive the Relay directly and to allow 3V supply operation.


Circuit Diagram:


Clap Sensitive on-off Relay Circuit Diagram

5 Watt Class-A Audio Amplifier

Simple 5 Watt Amplifier circuit, No cross-over distortion

This solid-state push-pull single-ended Class A circuit is capable of providing a sound comparable to those valve amplifiers, delivering more output power (6.9W measured across a 8 Ohm loudspeaker cabinet load), less THD, higher input sensitivity and better linearity. Voltage and current required for this circuit are 24V and 700mA respectively, compared to 250V HT rail and 1A @ 6.3V filament heating for valve-operated amplifiers. The only penalty for the transistor operated circuit is the necessity of using a rather large Heatsink for Q2 and Q3 (compared to the maximum power delivered).In any case, the amount of heat generated by this circuit can be comparable to that of a one-valve amplifier. An optional bass-boost facility can be added, by means of R5 and C5.


Circuit diagram:


5 Watt Class-A Audio Amplifier Circuit Diagram

220V AC Lamp Toggle Switch


Compact, transformerless circuitry No relays employed

Due to the low current drawing, the circuit can be supplied from 230Vac mains without a transformer. Supply voltage is reduced to 12Vdc by means of C1 reactance, a two diode rectifier cell D1 & D2 and Zener diode D3. IC1A, IC1B, R2, R3 and C3 form a reliable bounce-free toggle switch operated by P1. R4 and C4, wired to pin #6 of IC1B reset the circuit (lamp off) when power supply is applied. IC1C and IC1D wired in parallel act as a buffer, driving the Gate of the Triac through R5.


Circuit diagram:



220V AC Lamp Toggle Switch Circuit Diagram

Emergency Light and Alarm

This Emergency Light and Alarm circuit comes with 4 switchable options. It is permanently plugged into a mains socket and NI-CD batteries are trickle-charged. When a power outage occurs, the lamp automatically illuminates. Instead of illuminating a lamp, an alarm sounder can be chosen. When power supply is restored, the lamp or the alarm is switched-off. A switch provides a "latch-up" function, in order to extend lamp or alarm operation even when power is restored.


Circuit Diagram:


Emergency Light and Alarm Circuit Digram

25 Watt Audio Power Amplifier

This is a 25 Watt basic power amp that was designed to be (relatively) easy to build at a reasonable cost. It has better performance than the standard STK module amps that are used in practically every mass market stereo receiver manufactured today. This high quality simple design doesn't need a preamplifier

Circuit diagram:


25 Watt Audio Amplifier Circuit Diagram

Fire Alarm Using Thermistor

This small and simple fire alarm circuit uses thermistor as the heat sensor. When temperature increases, its resistance decreases, and vice versa. At normal temperature, the resistance of the Thermistor (TH1) is approximately 10 kilo-ohms, which reduces to a few ohms as the temperature increases beyond 100 C. The circuit uses readily available components and can be easily constructed on any general-purpose PCB. You can used this circuit as Home-Security purpose.


Circuit Diagram:

Fire Alarm Using Thermistor schematic

Fire Alarm Circuit Diagram

Low Cost Hearing Aid

Small and portable hearing aid for old men and old women.  

This low-cost, general-purpose electronic hearing aid works off 3V DC (2x1.5V battery). The circuit can be easily assembled on a veroboard. For easy assembling and maintenance, use an 8-pin DIP IC socket for TDA2822M.

Circuit Diagrams:
Low Cost Hearing Aid Schematic A Low Cost hearing Aid Schematic

Car-Bulb Flasher

Suitable for alerting purpose, Drives 12v Car bulbs
This astonishingly simple circuit allows one or two powerful 12V 21W car bulbs to be driven in flashing mode by means of a power MosFet. Devices of this kind are particularly suited for road, traffic and yard alerts and in all cases where mains supply are not available but a powerful flashing light are yet necessary.

Circuit Diagram:
Car-Bulb Flasher schematic

Mobile Phone Battery Charger

Small and portable unit, Can be assembled on veroboard
Mobile phone chargers available in the market are quite expensive. The circuit presented here comes as a low-cost alternative to charge mobile telephones/battery packs with a rating of 7.2 volts, such as Nokia 6110/6150.


Circuit diagram:

Mobile Phone Battery Charger Circuit Diagram