Optimised Semiconductor Noise Source

We have already published designs that use a transistor junction operating in Zener breakdown as a noise source. Anyone who has experimented with a reverse-biased transistor knows that the amplitude of the noise voltage generated in this manner is strongly dependent on the supply voltage. The variation between individual transistors is also rather large. An obvious solution is to use an adjustable supply voltage for the noise generator stage. A BC547B starts to break down at around 8V.

Optimised Semiconductor Noise Source

Supply Voltage Monitor

A circuit for monitoring supply voltages of ±5 V and ±12 V is readily constructed as shown in the diagram. It is appreciably simpler than the usual monitors that use comparators, and AND gates. The circuit is not intended to indicate the level of the inputs. In normal operation, transistors T1 and T3 must be seen as current sources. The drop across resistors R1 and R2 is 6.3 V (12 –5 –0.7). This means that the current is 6.3mA and this flows through diode D1 when all four voltages are present. However, if for instance, the –5 V line fails, transistor T3 remains on but the base-emitter junction of T2 is no longer biased, so that this transistor is cut off. When this happens, there is no current through D which then goes out.

Supply Voltage Monitor